Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.470
Filter
1.
Cell Mol Neurobiol ; 44(1): 43, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703332

ABSTRACT

Cell transplantation is a promising treatment option for spinal cord injury (SCI). However, there is no consensus on the choice of carrier scaffolds to host the cells. This study aims to evaluate the efficacy of different material scaffold-mediated cell transplantation in treating SCI in rats. According to PRISMA's principle, Embase, PubMed, Web of Science, and Cochrane databases were searched, and relevant literature was referenced. Only original research on cell transplantation plus natural or synthetic scaffolds in SCI rats was included. Direct and indirect evidence for improving hind limb motor function was pooled through meta-analysis. A subgroup analysis of some factors that may affect the therapeutic effect was conducted to understand the results fully. In total, 25 studies met the inclusion criteria, in which 293 rats received sham surgery, 78 rats received synthetic material scaffolds, and 219 rats received natural materials scaffolds. The network meta-analysis demonstrated that although synthetic scaffolds were slightly inferior to natural scaffolds in terms of restoring motor function in cell transplantation of SCI rats, no statistical differences were observed between the two (MD: -0.35; 95% CI -2.6 to 1.9). Moreover, the subgroup analysis revealed that the type and number of cells may be important factors in therapeutic efficacy (P < 0.01). Natural scaffolds and synthetic scaffolds are equally effective in cell transplantation of SCI rats without significant differences. In the future, the findings need to be validated in multicenter, large-scale, randomized controlled trials in clinical practice. Trial registration: Registration ID CRD42024459674 (PROSPERO).


Subject(s)
Cell Transplantation , Spinal Cord Injuries , Tissue Scaffolds , Animals , Spinal Cord Injuries/therapy , Rats , Tissue Scaffolds/chemistry , Cell Transplantation/methods , Network Meta-Analysis , Treatment Outcome , Recovery of Function
2.
J Chem Neuroanat ; 137: 102413, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492895

ABSTRACT

Chronic pain is often accompanied by tissue damage and pain hypersensitivity. It easily relapses and is challenging to cure, which seriously affects the patients' quality of life and is an urgent problem to be solved. Current treatment methods primarily rely on morphine drugs, which do not address the underlying nerve injury and may cause adverse reactions. Therefore, in recent years, scientists have shifted their focus from chronic pain treatment to cell transplantation. This review describes the classification and mechanism of chronic pain through the introduction of the characteristics of olfactory ensheathing cells (OECs), an in-depth discussion of special glial cells through the phagocytosis of nerve debris, receptor-ligand interactions, providing nutrition, and other inhibition of neuroinflammation, and ultimately supporting axon regeneration and mitigation of chronic pain. This review summarizes the potential and limitations of OECs for treating chronic pain by objectively analyzing relevant clinical trials and methods to enhance efficacy and future development prospects.


Subject(s)
Chronic Pain , Olfactory Bulb , Humans , Chronic Pain/therapy , Animals , Olfactory Bulb/cytology , Neuroglia , Cell Transplantation/methods
3.
J Vis Exp ; (203)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38345250

ABSTRACT

Transplantation of photoreceptor cells and retinal pigment epithelial (RPE) cells provide a potential therapy for retinal degeneration diseases. Subretinal transplantation of therapeutic donor cells into mouse recipients is challenging due to the limited surgical space allowed by the small volume of the mouse eye. We developed a trans-scleral surgical transplantation platform with direct transpupillary vision guidance to facilitate the subretinal delivery of exogenous cells in mouse recipients. The platform was tested using retinal cell suspensions and three-dimensional retinal sheets collected from rod-rich Rho::EGFP mice and cone-rich OPN1LW-EGFP;NRL-/- mice, respectively. Live/dead assay showed low cell mortality for both forms of donor cells. Retinal grafts were successfully delivered into the subretinal space of a mouse model of retinal degeneration, Rd1/NS, with minimum surgical complications as detected by multimodal confocal scanning laser ophthalmoscope (cSLO) imaging. Two months post-transplantation, histological staining demonstrated evidence of advanced maturation of the retinal grafts into 'adult' rods and cones (by robust Rho::EGFP, S-opsin, and OPN1LW:EGFP expression, respectively) in the subretinal space. Here, we provide a surgical platform that can enable highly accurate subretinal delivery with a low rate of complications in mouse recipients. This technique offers precision and relative ease of skill acquisition. Furthermore, the technique could be used not only for studies of subretinal cell transplantation but also for other intraocular therapeutic studies including gene therapies.


Subject(s)
Retinal Degeneration , Mice , Animals , Retinal Degeneration/surgery , Retinal Degeneration/metabolism , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Cell Transplantation/methods , Vision, Ocular
4.
Eur J Pharmacol ; 966: 176346, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38246329

ABSTRACT

Cell transplantation has brought about a breakthrough in the treatment of nerve injuries, and the efficacy of cell transplantation compared to drug and surgical therapies is very exciting. In terms of transplantation targets, the classic cells include neural stem cells (NSCs) and Schwann cells, while a class of cells that can exist and renew throughout the life of the nervous system - olfactory ensheathing cells (OECs) - has recently been discovered in the olfactory system. OECs not only encircle the olfactory nerves but also act as macrophages and play an innate immune role. OECs can also undergo reprogramming to transform into neurons and survive and mature after transplantation. Currently, many studies have confirmed the repairing effect of OECs after transplantation into injured nerves, and safe and effective results have been obtained in clinical trials. However, the specific repair mechanism of OECs among them is not quite clear. For this purpose, we focus here on the repair mechanisms of OECs, which are summarized as follows: neuroprotection, secretion of bioactive factors, limitation of inflammation and immune regulation, promotion of myelin and axonal regeneration, and promotion of vascular proliferation. In addition, integrating the aspects of harvesting, purification, and prognosis, we found that OECs may be more suitable for transplantation than NSCs and Schwann cells, but this does not completely discard the value of these classical cells. Overall, OECs are considered to be one of the most promising transplantation targets for the treatment of nerve injury disorders.


Subject(s)
Neural Stem Cells , Spinal Cord Injuries , Humans , Olfactory Bulb , Myelin Sheath , Neurons , Cell Transplantation/methods , Nerve Regeneration , Neuroglia
5.
Neuropeptides ; 103: 102389, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37945445

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) often leads to cognitive and neurological dysfunction. Valproic acid (VPA) has a neuroprotective effect in acute central nervous system diseases; the neurotrophin 3 gene (NT-3) can maintain the survival of neurons, and olfactory ensheathing cells (OECs) can promote the growth of nerve axons. This study aimed to evaluate the restorative effect of VPA combined with NT-3 modified OECs (NT-3-OECs) on neurological function after TBI. METHODS: The neurological severity score (NSS) of rats was evaluated on the 1st, 7th, 14th, and 28th day after TBI modeling and corresponding intervention. Hematoxylin-eosin (HE) staining, p75 nerve growth factor receptor (P75), glial fibrillary acidic protein (GFAP), and neurofilament protein (NF)staining, and argyrophilic staining were used to observe the morphology of brain tissue 28 days after modeling. Moreover, TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect the apoptosis rate of neurons. The changes in synapses and mitochondria in the injured area were observed by electron microscope. RESULTS: NT-3-OECs transplantation can increase the content of NT-3 in brain tissue, and NT-3-OECs can survive for >28 days. The NSS score of the TBI-VPA-NT-3-OECs group 28 days after cell transplantation was significantly lower than that of the other model treatment groups (P < 0.05). The morphological structure of the brain tissue was more complete, and the neurofilament fibers were neatly arranged, achieving better results than those of the other groups. The apoptosis rate of nerve cells in the TBI-VPA-NT-3-OECs group was significantly lower than in the other treatment groups (P < 0.05). Furthermore, the number of synapses in the combined intervention group was significantly higher than in the other treatment groups, and the mitochondrial structure was more complete. CONCLUSION: NT-3-OECs have good biological function, and VPA combined with NT-3-OECs transplantation can effectively improve the prognosis of TBI rats.


Subject(s)
Brain Injuries, Traumatic , Valproic Acid , Rats , Animals , Rats, Sprague-Dawley , Valproic Acid/pharmacology , Brain Injuries, Traumatic/therapy , Neurons , Cell Transplantation/methods , Olfactory Bulb
6.
Brain Res ; 1825: 148732, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38104922

ABSTRACT

Trigeminal neuralgia (TN) is a common form of facial pain, which primarily manifests as severe pain similar to facial acupuncture and electric shock. Olfactory ensheathing cells (OECs) are glial cells with high bioactivity; these cells are essential for the periodic regeneration of the olfactory nerve and have been utilized for the repair of nerve injuries. A member of the P2X receptor family, P2X7R, is an ion channel type receptor that has been confirmed to participate in various pain response processes. In this study, we transplanted OECs into trigeminal nerve-model rats with distal infraorbital nerve ligation to observe the therapeutic effect of transplanted OECs in rats. Additionally, we utilized the P2X7R-specific inhibitor brilliant blue G (BBG) to study the therapeutic mechanisms of cell transplantation. The facial mechanical pain threshold of these rats significantly increased following cell transplantation. The immunohistochemistry, immunoblotting, and RT-qPCR results demonstrated that the levels of P2X7R, (NOD)-like receptor protein-3 (NLRP3), nuclear factor-κB (NF-κB), interleukin (IL)-1ß, and IL-18 in the trigeminal ganglion of rats treated with OEC transplantation or BBG treatment were significantly lower than those in the injured group without treatment. Overall, our results demonstrate that OEC transplantation can alleviate TN in rats, and it can reduce the expression of P2X7R related inflammatory factors in TN rats, reducing neuroinflammatory response in TG.


Subject(s)
Trigeminal Neuralgia , Rats , Animals , Trigeminal Neuralgia/drug therapy , Trigeminal Neuralgia/metabolism , Rats, Sprague-Dawley , Facial Pain/metabolism , Pain Threshold/physiology , Cell Transplantation/methods , Olfactory Bulb/metabolism
8.
Cell Transplant ; 32: 9636897231199319, 2023.
Article in English | MEDLINE | ID: mdl-37771302

ABSTRACT

In the past decades, the properties of olfactory ensheathing cells (OECs) have been widely investigated. Studies have shown that transplantation of OECs cultured from the olfactory bulb mediates axonal regeneration, remyelination and restores lost functions in experimental central nervous system (CNS) injury models. Autologously sourcing the cells from the nasal mucosa or the olfactory bulb to treat patients with spinal cord injuries would be ideal, but the cell yield achieved may be inadequate to cover the surface area of the lesions typically encountered in human spinal cord contusion injuries. Therefore, banking allogenic cryopreserved olfactory bulb cells from donors or generating cell lines could provide a marked increase in cell stock available for transplantation. This study is undertaken in two control and two intervention groups. The control groups have lesions alone and lesions with collagen gel but without cells. The intervention groups have either transplantation of primary cultured olfactory bulb OECs (bOECs) encapsulated in collagen gel or cryopreserved bulb OECs (CbOECs) encapsulated in collagen gel. Here, we report that transplantation of cryopreserved rat bOECs encapsulated in collagen restored the loss of function in a vertical climbing test in a unilateral C6-T1 dorsal root injury model. The loss of function returns in 80% of rats with injuries in about 3 weeks comparable to that we observed after transplantation of primary cultured bOECs. The regeneration axons induced by the transplant are identified by neurofilament antibodies and ensheathed by OECs. Our results indicate that cryopreserved OECs retain their properties of inducing axon regeneration and restoring loss of function in the experimental model. This is a step forward to translate the research into future clinical applications.


Subject(s)
Axons , Spinal Cord Injuries , Rats , Humans , Animals , Axons/metabolism , Cell Transplantation/methods , Nerve Regeneration/physiology , Spinal Cord Injuries/pathology , Olfactory Bulb , Collagen/metabolism
9.
Int J Dermatol ; 62(11): 1324-1331, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37715361

ABSTRACT

OBJECTIVE: This systematic review provides a comprehensive analysis of the efficacy of autologous cell transplant as a therapeutic approach for stable segmental vitiligo. Vitiligo poses significant challenges for healthcare professionals in terms of treatment selection. Autologous cell transplant has emerged as a promising modality for managing vitiligo, with cultured and noncultured transplants being considered when determining the patient's treatment approach. There is little knowledge and literature on the subject, so we analyze the different studies. METHOD: Using online medical literature databases and the PRISMA guidelines, six out of 60 articles met the acceptance criteria to be analyzed, emphasizing the lack of current literature on this subject. RESULTS: Autologous cell transplant achieves excellent pigmentation rates for many body parts. We found that cultivated cells had better results than noncultivated ones. Both types of treatments could pigment 80% or more where needed. CONCLUSION: This review highlights the importance of autologous cell transplant as a new and reliable tool for the treatment of stable segmental vitiligo, cultured transplants being the most effective. By employing autologous cell transplant, the repigmentation rate is notably high and consistently achievable. Although its cost and logistical complexities hinder the current accessibility to this therapy, efforts are being made to enhance its availability, and its scope is expected to expand further. More studies are needed to understand this therapy method in other kinds of vitiligo.


Subject(s)
Pigmentation Disorders , Vitiligo , Humans , Vitiligo/surgery , Treatment Outcome , Transplantation, Autologous , Cell Transplantation/methods , Skin Pigmentation , Melanocytes/transplantation
10.
Adv Exp Med Biol ; 1409: 145-159, 2023.
Article in English | MEDLINE | ID: mdl-36289162

ABSTRACT

Since insulin deficiency results from pancreatic beta-cell destruction, all type 1 and most type 2 diabetes patients eventually require life-long insulin injections. Insulin gene synthesis could also be impaired due to insulin gene mutations as observed in diabetic patients with MODY 10. At this point, insulin gene therapy could be very effective to recompense insulin deficiency under these circumstances. For this reason, an HIV-based lentiviral vector carrying the insulin gene under the control of insulin promoter (LentiINS) was generated, and its therapeutic efficacy was tested in a beta-cell transplant model lacking insulin produced by CRISPR/Cas9-mediated genetically engineered pancreatic beta cells. To generate an insulin knockout beta-cell transplant animal model of diabetes, a dual gene knockout plasmid system involving CRISPR/Cas9 was transfected into a mouse pancreatic beta cell line (Min6). Fluorescence microscopy and antibiotic selection were utilized to select the insulin gene knockout clones. Transplantation of the genetically engineered pancreatic beta cells under the kidney capsule of STZ-induced diabetic rats revealed LentiINS- but not LentiLacZ-infected Ins2KO cells transiently reduced hyperglycemia similar to that of MIN6 in diabetic animals. These results suggest LentiINS has the potential to functionally restore insulin production in an insulin knockout beta-cell transplant animal model of diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Mice , Animals , Rats , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Insulin/genetics , Insulin/metabolism , Animals, Genetically Modified , Insulin-Secreting Cells/metabolism , Models, Animal , Cell Transplantation/methods
12.
J Cosmet Dermatol ; 21(12): 7147-7152, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36208002

ABSTRACT

INTRODUCTION: Among several surgical treatments, the use of transplantation of epidermal cultured melanocytes or melanocytes-keratinocytes cell suspension has gained many researchers and dermatologists' attention as a new technique for the treatment of vitiligo. The present study aimed to transplant autologous epidermal melanocytes-keratinocytes cell suspension for the treatment of vitiligo. METHODS: In this study, 15 volunteer patients aged between 18 and 45 years old were studied. The autologous melanocytes-keratinocytes cell suspension was then transplanted to the region after dermabrasion. The included patients were evaluated by VisioFace, MPA9, and Skin Scanner-DUB once before and 1, 2, and 6 months after the transplantation, while the extents of stainability and changes in the transplanted region were recorded. RESULTS: The color contrast between the lesion and normal skin significantly decreased after 1, 2, and 6 months of the melanocytes transplantation compared with the pre-procedure (13.8 ± 0.45 before vs. 12.9 ± 0.43, 12.2 ± 0.45, and 10.2 ± 0.34 at months 1, 2, and 6, p < 0.001). Furthermore, melanin index significantly increased six months after cell transplantation compared to the pretreatment (168.3 ± 4.22 vs. 130.5 ± 3.98, p < 0.001). CONCLUSION: Transplantation of melanocytes cells with dermabrasion can be effective on vitiligo improvement, so it is recommended.


Subject(s)
Vitiligo , Humans , Adolescent , Young Adult , Adult , Middle Aged , Vitiligo/diagnosis , Vitiligo/therapy , Vitiligo/pathology , Treatment Outcome , Keratinocytes/transplantation , Melanocytes/transplantation , Cell Transplantation/methods , Transplantation, Autologous , Suspensions , Biometry
13.
Mol Neurobiol ; 59(10): 6447-6459, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35962300

ABSTRACT

Neural regeneration has troubled investigators worldwide in the past decades. Currently, cell transplantation emerged as a breakthrough targeted therapy for spinal cord injury (SCI) in the neurotrauma field, which provides a promising strategy in neural regeneration. Olfactory ensheathing cells (OECs), a specialized type of glial cells, is considered as the excellent candidate due to its unique variable and intrinsic regeneration-supportive properties. In fact, OECs could support olfactory receptor neuron turnover and axonal extension, which is essential to maintain the function of olfactory nervous system. Hitherto, an increasing number of literatures demonstrate that transplantation of OECs exerts vital roles in neural regeneration and functional recovery after neural injury, including central and peripheral nervous system. It is common knowledge that the deteriorating microenvironment (ischemia, hypoxia, scar, acute and chronic inflammation, etc.) resulting from injured nervous system is adverse for neural regeneration. Interestingly, recent studies indicated that OECs could promote neural repair through improvement of the disastrous microenvironments, especially to the overwhelmed inflammatory responses. Although OECs possess unusual advantages over other cells for neural repair, particularly in SCI, the mechanisms of OEC-mediated neural repair are still controversial with regard to anti-inflammation. Therefore, it is significant to summarize the anti-inflammation property of OECs, which is helpful to understand the biological characteristics of OECs and drive future studies. Here, we mainly focus on the anti-inflammatory role of OECs to make systematic review and discuss OEC-based therapy for CNS injury.


Subject(s)
Olfactory Bulb , Spinal Cord Injuries , Anti-Inflammatory Agents/metabolism , Cell Transplantation/methods , Humans , Nerve Regeneration/physiology , Neuroglia/metabolism , Olfactory Bulb/metabolism , Spinal Cord
14.
Mar Biotechnol (NY) ; 24(2): 417-429, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35380303

ABSTRACT

In germ cell transplantation experiments, the use of sterile recipients that do not produce their own gametes is an important prerequisite. Triploidization and dnd gene knockdown (KD) methods have been widely used to produce sterile fish. However, triploidization does not produce complete sterility in some fish species, and gene KD is labor and time intensive since it requires microinjection into individual fertilized eggs. To overcome these problems, in this study, we generated homozygous mutants of the dead end (dnd) gene in rainbow trout (Oncorhynchus mykiss) using the clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system, analyzed their reproductive capacity, and evaluated their suitability as recipients for germ cell transplantation. By crossing F1 heterozygous mutants produced from founders subjected to genome editing, an F2 generation consisting of approximately 1/4 homozygous knockout mutants (dnd KO) was obtained. The dnd KO hatchlings retained the same number of primordial germ cells (PGCs) as the wild-type (WT) individuals, after which the number gradually decreased. At 1 year of age, germ cells were completely absent in all analyzed individuals. To evaluate the dnd KO individuals as recipients for germ cell transplantation, germ cells prepared from donor individuals were transplanted into the abdominal cavity of dnd KO hatchlings. These cells migrated to the recipient gonads, where they initiated gametogenesis. The mature recipient individuals produced only donor-derived sperm and eggs in equivalent numbers to WT rainbow trout. These results indicate that dnd KO rainbow trout are suitable recipient candidates possessing a high capacity to nurse donor-derived germ cells.


Subject(s)
Infertility , Oncorhynchus mykiss , Animals , Cell Transplantation/methods , Gene Knockout Techniques , Germ Cells/transplantation , Gonads , Oncorhynchus mykiss/genetics
15.
Surg Endosc ; 36(6): 3911-3919, 2022 06.
Article in English | MEDLINE | ID: mdl-34494154

ABSTRACT

INTRODUCTION: Cell sheet technology is one of the most successful methodologies in regenerative medicine. Various applications of cell sheets have been introduced in first-in-human studies in several clinical fields. When transplanting a cell sheet into internal organs, a relatively large incision is required for delivery due to difficulty handling the sheet. We developed a laparoscopic delivery procedure for safe and easy transplantation of cell sheets in a porcine model. METHODS: Pneumoperitoneum was established by inflation with CO2. First, to increase the strength during handling, fibrin was sprayed onto the surface of the cell sheet, and then a myoblast sheet was placed onto the newly developed carrier. The sheets were pinched with laparoscopic forceps to insert into the abdominal cavity through the laparoscopic port. Myoblast sheets were then applied to the surface of the liver, colon, small intestine, and stomach, and procedure times were measured. At three days post transplantation, a histopathological examination was performed to confirm engraftment of the sheet. The function and engraftment were also analyzed in a duodenal endoscopic submucosal dissection (ESD) model. RESULTS: The fibrin-processed myoblast sheet was able to be managed with conventional laparoscopic forceps without breaking. Despite the drastic change in air pressure by passing through the laparoscopic port, the sheets suffered no apparent damage. The transplantation procedure times did not markedly differ among transplant sites. A histopathological examination revealed thin-layered, desmin-positive cells at each transplant site. With transplantation following ESD, the engrafted myoblast sheets effectively prevented delayed perforation. CONCLUSIONS: Our procedure is simple, and the system involves a carrier made of medically fit silicon, commercially available fibrin glue and conventional laparoscopic forceps. Our procedure is a powerful tool for laparoscopical cell sheet transplantation.


Subject(s)
Cell Transplantation/methods , Endoscopic Mucosal Resection , Laparoscopy , Pneumoperitoneum , Animals , Fibrin , Fibrin Tissue Adhesive , Regenerative Medicine , Swine
16.
Laryngoscope ; 132(3): 523-527, 2022 03.
Article in English | MEDLINE | ID: mdl-33988246

ABSTRACT

OBJECTIVES/HYPOTHESIS: To evaluate the safety and potential efficacy of autologous muscle-derived cells (AMDCs) for the treatment of swallowing impairment following treatment for oropharynx cancer. STUDY DESIGN: Prospective, phase I, open label, clinical trial. METHODS: Oropharynx cancer survivors disease free ≥2 years post chemoradiation were recruited. All patients had swallowing impairment but were not feeding tube dependent (Functional Oral Intake Scale [FOIS] ≥ 5). Muscle tissue (50-250 mg) was harvested from the vastus lateralis and 150 × 106 AMDCs were prepared (Cook MyoSite Inc., Pittsburgh, PA). The cells were injected into four sites throughout the intrinsic tongue musculature. Participants were followed for 24 months. The primary outcome measure was safety. Secondary endpoints included objective measures on swallowing fluoroscopy, oral and pharyngeal pressure, and changes in patient-reported outcomes. RESULTS: Ten individuals were enrolled. 100% (10/10) were male. The mean age of the cohort was 65 (±8.87) years. No serious adverse event occurred. Mean tongue pressure increased significantly from 26.3 (±11.1) to 31.8 (±9.5) kPa (P = .017). The mean penetration-aspiration scale did not significantly change from 5.6 (±2.1) to 6.8 (±1.8), and the mean FOIS did not significantly change from 5.4 (±0.5) to 4.6 (±0.7). The incidence of pneumonia was 30% (3/10) and only 10% (1/10) experienced deterioration in swallowing function throughout 2 years of follow-up. The mean eating assessment tool (EAT-10) did not significantly change from 24.1 (±5.57) to 21.3 (±6.3) (P = .12). CONCLUSION: Results of this phase I clinical trial demonstrate that injection of 150 × 106 AMDCs into the tongue is safe and may improve tongue strength, which is durable at 2 years. A blinded placebo-controlled trial is warranted. LEVEL OF EVIDENCE: 3 Laryngoscope, 132:523-527, 2022.


Subject(s)
Cell Transplantation/methods , Deglutition Disorders/therapy , Head and Neck Neoplasms/complications , Muscle Cells/transplantation , Aged , Deglutition Disorders/etiology , Fluoroscopy/methods , Humans , Male , Manometry , Prospective Studies
17.
J Virol ; 96(3): e0139421, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34818071

ABSTRACT

Humanized mouse models are based on the engraftment of human cells in immunodeficient mouse strains, most notably the NSG strain. Most used models have a major limitation in common, the development of graft-versus-host disease (GVHD). GVHD not only introduces variabilities into the research data but also leads to animal welfare concerns. A new mouse strain, B6.129S-Rag2tm1Fwa CD47tm1Fpl Il2rgtm1Wjl/J, which lacks Rag1, IL2rg, and CD47 (triple knockout [TKO]), is resistant to GVHD development. We transplanted TKO mice with human peripheral blood mononuclear cells (PBMCs) to establish a new humanized PBMC (hu-PBMC) mouse model. A cohort of these mice was infected with HIV-1 and monitored for plasma HIV viremia and CD4+ T cell depletion. The onset and progression of GVHD were monitored by clinical signs. This study demonstrates that TKO mice transplanted with human PBMCs support engraftment of human immune cells in primary and secondary lymphoid tissues, rectum, and brain. Moreover, the TKO hu-PBMC model supports HIV-1 infection via the intraperitoneal, rectal, or vaginal route, as confirmed by robust plasma HIV viremia and CD4+ T cell depletion. Lastly, TKO mice showed a delayed onset of GVHD clinical signs (∼24 days) and exhibited significant decreases in plasma levels of tumor necrosis factor beta (TNF-ß). Based on these results, the TKO hu-PBMC mouse model not only supports humanization and HIV-1 infection but also has a delayed onset of GVHD development, making this model a valuable tool in HIV research. IMPORTANCE Currently, there is no cure or vaccine for HIV infection; thus, continued research is needed to end the HIV pandemic. While many animal models are used in HIV research, none is used more than the humanized mouse model. A major limitation with current humanized mouse models is the development of graft-versus-host disease (GVHD). Here, we describe a novel humanized-PBMC mouse model that has a delayed onset GVHD development and supports and models HIV infection comparably to well-established humanized mouse models.


Subject(s)
Cell Transplantation , Disease Models, Animal , Graft vs Host Disease/etiology , HIV Infections/immunology , HIV Infections/virology , Leukocytes, Mononuclear/transplantation , Animals , Cell Transplantation/adverse effects , Cell Transplantation/methods , Disease Susceptibility , Female , HIV-1/immunology , Humans , Male , Mice , Mice, Knockout , Research , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Time Factors
18.
Cell Transplant ; 30: 9636897211060269, 2021.
Article in English | MEDLINE | ID: mdl-34931534

ABSTRACT

Cell transplantation is expected to be another strategy to treat lysosomal diseases, having several advantages compared to enzyme replacement therapy, such as continuous enzyme secretion and one-time treatment to cure diseases. However, cell transplantation for lysosomal diseases holds issues to be resolved for the clinical field. In this study, we developed a new ex vivo gene therapy platform using a transplant pack, which consists of a porous membrane made of ethylene-vinyl alcohol in the pack-type and spheroids with scaffolds. These membranes have countless pores of less than 0.1 µm2 capable of secreting proteins, including alpha-galactosidase enzyme, and segregating the contents from the host immune system. When the packs were subcutaneously transplanted into the backs of green fluorescent protein (GFP) mice, no GFP-positive cells migrated to the transplanted pack in either autogenic or allogenic mice. The transplanted cells in the pack survived for 28 days after transplantation. When cells overexpressing alpha-galactosidase were used as donor cells for the packs and implanted into Fabry disease model mice, the accumulation of the alpha-galactosidase enzyme was also observed in the livers. In this study, we reported a new ex vivo therapeutic strategy combining macroencapsulation and cellular spheroids with scaffolds. This pack, macroencapsulated spheroids with scaffolds, can also be applied to other types of lysosomal diseases by modifying genes of interest.


Subject(s)
Cell Transplantation/methods , Enzyme Replacement Therapy/methods , Fabry Disease/therapy , Spheroids, Cellular/metabolism , Animals , Disease Models, Animal , Fabry Disease/immunology , Humans , Mice
19.
Exp Cell Res ; 409(1): 112908, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34736920

ABSTRACT

For decades now, cell transplantation has been considered a possible therapeutic strategy for muscular dystrophy, but failures have largely outnumbered success or at least encouraging outcomes. In this review we will briefly recall the history of cell transplantation, discuss the peculiar features of skeletal muscle, and dystrophic skeletal muscle in particular, that make the procedure complicated and inefficient. As there are many recent and exhaustive reviews on the various myogenic cell types that have been or will be transplanted, we will only briefly describe them and refer the reader to these reviews. Finally, we will discuss possible strategies to overcome the hurdles that prevent biological efficacy and hence clinical success.


Subject(s)
Cell Transplantation/methods , Muscle, Skeletal/cytology , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/therapy , Animals , Cell Differentiation/physiology , Humans , Muscle Development/physiology
20.
J Assist Reprod Genet ; 38(12): 3155-3173, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34661801

ABSTRACT

PURPOSE: Spermatogonial stem cells (SSCs) are the source for the mature male gamete. SSC technology in humans is mainly focusing on preserving fertility in cancer patients. Whereas in livestock, it is used for mining the factors associated with male fertility. The review discusses the present status of SSC biology, methodologies developed for in vitro culture, and challenges ahead in establishing SSC technology for the propagation of superior germplasm with special reference to livestock. METHOD: Published literatures from PubMed and Google Scholar on topics of SSCs isolation, purification, characterization, short and long-term culture of SSCs, stemness maintenance, epigenetic modifications of SSCs, growth factors, and SSC cryopreservation and transplantation were used for the study. RESULT: The fine-tuning of SSC isolation and culture conditions with special reference to feeder cells, growth factors, and additives need to be refined for livestock. An insight into the molecular mechanisms involved in maintaining stemness and proliferation of SSCs could facilitate the dissemination of superior germplasm through transplantation and transgenesis. The epigenetic influence on the composition and expression of the biomolecules during in vitro differentiation of cultured cells is essential for sustaining fertility. The development of surrogate males through gene-editing will be historic achievement for the foothold of the SSCs technology. CONCLUSION: Detailed studies on the species-specific factors regulating the stemness and differentiation of the SSCs are required for the development of a long-term culture system and in vitro spermatogenesis in livestock. Epigenetic changes in the SSCs during in vitro culture have to be elucidated for the successful application of SSCs for improving the productivity of the animals.


Subject(s)
Cell Culture Techniques/methods , Cell Transplantation/methods , Livestock/physiology , Spermatogonia/cytology , Spermatogonia/physiology , Stem Cells/cytology , Stem Cells/physiology , Adult Germline Stem Cells , Animals , Fertility , In Vitro Techniques/methods , Male , Spermatogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...